

УДК 669.15-194

Чигиринский В.В.¹, Дыя Г.², Кнапински М.², Шейко С.П.¹

- 1 Запорожский Национальный технический университет. Украина, г. Запорожье
- ² Ченстоховский политехнический университет. Польша, г. Ченстохова

ФОРМИРОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ДЛЯ АВТОМОБИЛЕСТРОЕНИЯ В ПРОЦЕССЕ ХОЛОДНОГО И ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ

В работе проанализировано влияние хрома, ванадия и титана на механические свойства стали с использованием статистического метода планирования активного эксперимента. Установлены закономерности изменения механических свойств от влияния легирующих элементов и соответсвенно выбран рекомендуемый оптимальный химический состав стали. Наиболее сильно механические свойства стали зависят от содержания в стали хрома и титана. Заметно влияние соотношения количества хрома и титана. Представление результатов экспериментов в виде полинома второй степени оказалось оправданным — значительная часть нелинейных членов значимо отличается от нуля.

<u>Ключевые слава</u>: низколегированная сталь; легирующие элементы; химический состав; механические свойства; методы планирования

Введение

Расширение производства листового проката сталей различных классов определяется не только их технологогичностью, но и оптимальным сочетанием химического состава стали и деформационных режимов контролируемой прокатки. В автомобилестроении при изготовлении колесных сталей предъявляется повышенные требования, связаные с прочностью и вязкостью, большими нагрузками на неподрессоренную часть автомобыля, что приводит к увеличению предела прочности до $\sigma_{\rm B}$ = $400...500~{\rm M}\Pi{\rm a}$, ${\rm KCU}$ =0,78 ${\rm M}Дж/{\rm M}^2$.

Операции завивки сварки кромок цилиндра, профилирования, раздачи и обжима должны обеспечиваться высокими пластическими свойствами и ударной вязкости. Особенно это касается сварного шва обечайки, т.к. она обеспечивает качество обода.

Возникает необходимость оценки стали не только с точки зрения эксплуатации изделий, но и с точки зрения технологии производства.

Цель

Исследования механических свойств низколегированной стали для автомобилестроения при холодной и горячей обработки.

Исследование

Известны марки низколегированной стали [1], которые позволяют в процессе обработки улучшить прочностные характеристики материала. Известная низколегированная сталь [1], в состав которой

входит: углерод, кремний, марганец, хром, никель, алюминий, медь, фосфор, азот, магний, РЗМ остальное железо. Недостатком этой стали является снижение механических характеристик сварного шва в результате получения закалочных структур. Введение в состав стали кальция, титана, вольфрама, ниобия способствовало устранению негативного влияния закалочных структур ,при этом в зоне термического влияния сварного шва снижается уровень ударной вязкости.

Для колесного производства разработана высокопрочная марка низколегированной стали, в основе которой использован углерод, марганец, кремний, титан, фосфор, ванадий, ниобий, хром [2].

Используя метод планирования эксперимента [3], осуществлён эксперимент и определена зависимость ряда механических характеристик предлагаемой стали в зависимости от её химического состава: предел прочности ($\sigma_{\rm B}$), МПа, предела текучести ($\sigma_{\rm T}$), МПа, ударной вязкости (КСU), МДж/м², относительного удлинения ($\delta_{\rm s}$), %.

Механические испытания проводились в холодном состоянии при одноосном растяжении испытываемой модели ИР-100, согласно ГОСТ 1497-84.

В качестве независимых переменных были выбраны: содержание в стали хрома (X_1) , содержание в стали ванадия (X_2) , содержание в стали титана (X_3) . В процессе поиска оптимального состава сплава в индукционной печи с основной футеровкой емкостью 50 кг были проведены лабораторные плавки стали. Полученные отливки ковали на заготовки

3/2014

размером 10×80×120 мм, с последующим прокаткой в горячем состоянии. В табл. 1 представлены механические характеристики исследуемой стали.

Интервалы и уровни изменения факторов приведены в табл. 2. Для сокращения числа опытов и предполагая нелинейный характер функций отклика, в работе использовали симметричный композиционный план второго порядка [3].

оценка адекватности модели по критерию Фишера представлены в табл. 3.

После определения коэффициентов уравнений регрессии, был получен ряд уравнений, которые показывают зависимость механических свойств стали от содержания легирующих элементов.

В результате расчетов были получены следующие уравнения:

Таблица 1.

Экспериментальные механические характеристики стали

П	Механические характеристики				
Предложенная сталь	$\sigma_{_{\rm B}}$, МПа	$\sigma_{\scriptscriptstyle m T}$, МПа	δ ₅ , %	КСU, МДж/м²	
1	427	321	33	0,85	
2	525	473	25	0,65	
3	502	345	30,5	0,95	
4	503	451	28	0,90	
5	413	309	29,5	0,55	
6	575	496	18	0,45	
7	499	443	29,5	0,80	
прототип	760	265	34	0,80	

Таблица 2.

Факторы исследования

V	Факторы			
Характеристика	Ст, % мас.	V, % мас.	Ті, % мас.	
Код	X_1	X_2	X_3	
Основной уровень	0,15	0,15	0,15	
Интервал варьирования	0,05	0,05	0,05	
Нижний уровень	0,10	0,10	0,10	
Верхний уровень	0,20	0,20	0,20	

Таблица 3.

Проверка результатов регрессивного анализа на значимость и адекватность

Параметр	Функции отклика			
	Y_1	$Y^{}_2$	Y_3	Y_4
Δb	2,55	2,55	0,015	0,25
t-критерий	2,78	2,78	2,78	2,78
<i>F</i> -критерий	6,09>4,39	6,26>5,61	6,16>4,88	6,26>4,79

Для всех характеристик использовалось уравнение регрессии 2-ого порядка.

Дальнейшая обработка экспериментальных данных и оптимизация химического состава проводились с помощью пакета прикладных программ "Statistica", что позволило повысить эффективность исследований в несколько раз.

Численные значения коэффициентов регрессии и их значимость, определены с учетом различия дисперсий для каждой функции отклика, а также проверка значимости по критерию Стьюдента и

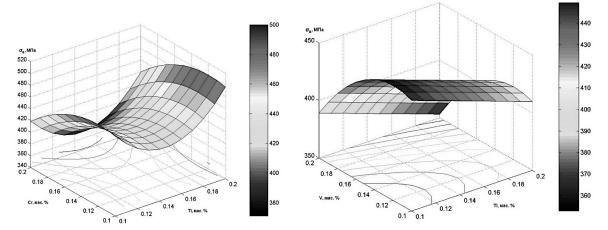
$$\begin{split} &\sigma_{_B} = 824 - 7385Cr - 991V + 1627Ti + 23222Cr^2 - \\ &- 9417Ti^2 + 4200CrV + 4200CrTi + 4200VTi; \end{split}$$

$$\begin{split} \sigma_{_T} &= 716 - 9636Cr + 162V + 2586Ti + 32983Cr^2 - \\ -2153V^2 - 11033Ti^2 + 2900CrV + 2900CrTi + 2900VTi; \\ KCU &= 0.52 + 9.52Cr - 1.63V - 2.67Ti - 31.78Cr^2 + \\ \end{split}$$

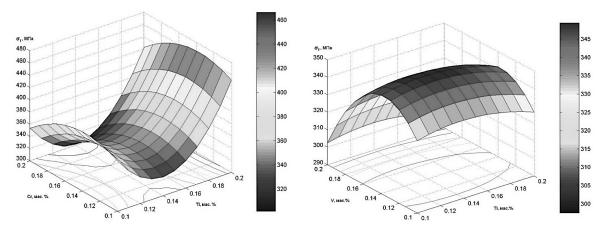
+12,22Ti² + 7,0CrV - 10,0CrTi;

 $\begin{array}{l} \delta_5 = 32 \, + \, 280 Cr \, - \, 161 V \, - \, 115 Ti \, - \, 1206 Cr^2 \ \, + \\ + \, 353 Ti^2 \, + \, 735 Cr V \, - \, 215 Cr Ti \, + \, 65 V Ti. \end{array}$

Для оценки адекватности уравнений был произведен расчет по полученным уравнениям регрессии для основного уровня химического состава



стали. Результаты расчетов были сопоставлены с экспериментальными данными. Погрешность между расчетными и экспериментальными значениями функции отклика не превышает 2%.


Используя пакет программ MatLab, построены трехмерные модели, которые упрощают исследование зависимости между группой факторов и исследуемыми в этой работе механическими свойствами (рис. 1–4)

На рис. 1, 2 показано, что с изменением химического состава изменяются механические характеристики стали. Видны тенденции увеличения предела прочности и текучести. Например, при содержании Ті и Сг 0,2% и 0,14% соответственно имеет место максимальное значение $\sigma_{\rm B} = 500~{\rm M}\Pi{\rm a}$ и т.д.

На рис. 3, 4 показано изменение ударной вязкости и относительного удлинения от тех же химических элементов. При значении Ті и Cr 0,16% и 0,2%, $KCU = 0.8 \ M\mbox{Д}\mbox{ж}/\mbox{м}^2$.

Рис. 1. Оптимизация химического состава стали с пределом прочности ($\sigma_{\rm R}$)

Рис. 2. Оптимизация химического состава стали с пределом текучести ($\sigma_{\rm T}$)

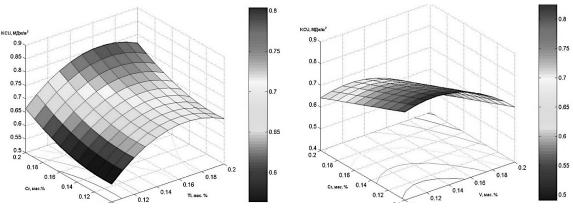


Рис. 3. Оптимизация химического состава стали с ударной вязкостью

3/2014 TEXHONORUHECK/E

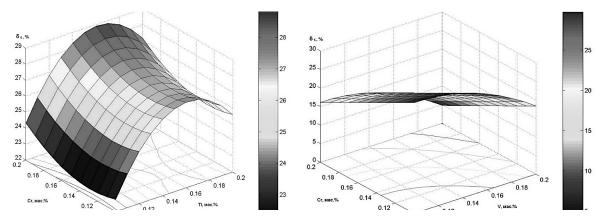


Рис. 4. Оптимизация химического состава стали с относительного удлинения

Химический состав стали представлен в табл. 4, при этом $\sigma_{\rm B}$ = 407 МПа, $\sigma_{\rm T}$ = 323 МПа, КСU = 0,78 МДж/м², $\delta_{\rm 5}$ = 27,5%.

Из анализа рисунков 1–4 видно, что сильнее всего механические свойства стали зависит от содержания в стали хрома и титана. Заметно влияет их соотношения. Представление результатов эксперимента полиномом второй степени оказалось оправданным – значительная часть нелинейных членов здесь значимо отличается от нуля. По результатам оптимизации рекомендован оптимальный химический состав стали, % мас.: углерод – 0,10, кремний – 0,31, хром – 0,1, ванадий – 0,13, титан – 0,12 (табл. 5).

Испытания стали в горячем состоянии проводилось на современном пластометре Gleeble 3800 и дилатометре. Рабочие параметры пластометра:

температура t = 20...1700 °C,

скорость движения пуансона до 2000 мм/сек, логарифм деформации:

 $\epsilon_{_{\!\mathit{CMC}}} = 0.01...1.2; \, \epsilon_{_{\!\mathit{paccm}}} = 0.01...0.15.$

Для уточнения температурного режима исследований был проведен эксперимент по определению температур точек перехода Ar_1 и Ar_3 для данной марки стали, которые соответствовали 724 °C и 898,6 °C (рис. 5). Размеры образцов соответствовали $d \times h = 5 \times 5$ мм.

Таблица 4.

Химический состав стали, % мас

Cr	V	Ti
0,15	0,15	0,15

Таблица 5.

Оптимальные показатели механических свойств разработанной низколегированной стали

Механические свойства				
$\sigma_{_{\rm B}}$, МПа $\sigma_{_{ m T}}$, МПа		КСU, МДж/м²	δ ₅ , %	
407 323		0,78	27,5	

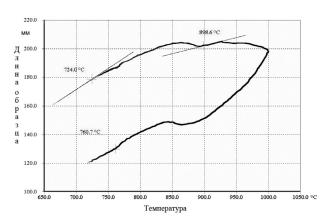
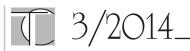
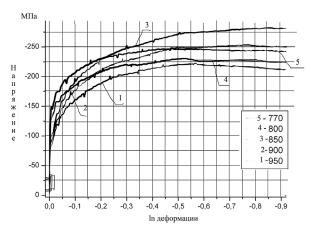
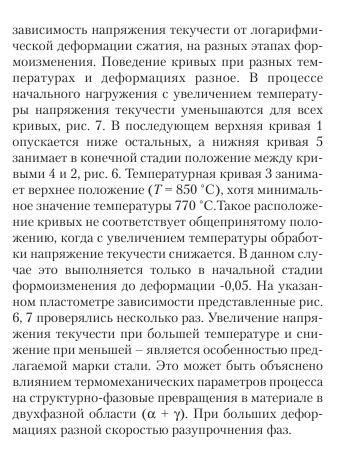


Рис. 5. Дилатограмма образца

При исследовании на пластометре, образцы размером $d \times h=10 \times 12$ мм помещались в камеру, внутри которой откачивался воздух и создавался вакуум для исключения окисления металла. Управление пластометром осуществлялось специальными компьютерными программами по температуре, скорости и степени деформации. Через определенные промежутки времени в процессе нагружения фиксировались напряжение текучести и логарифмическая деформация. В табл. 6 представлены термомеханичесике параметры деформируемых образцов.

На рис. 6, 7 представлены диаграммы сжатия образцов при разных температурах, показывающих


Таблица 6.

Параметры деформации

Образцы	1	2	3	4	5
Температура, °C	770	800	850	900	950
Скорость деформации, c^{-1}	10 0,011,2				
Степень деформации					

Рис. 6. Зависимость напряжений от начальной стадии деформации

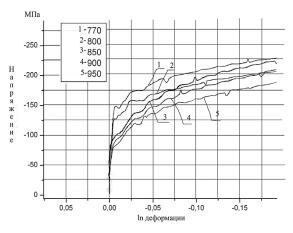


Рис. 7. Зависимость напряжений от полной стадии деформации

Выявленные особенности формоизменения могут быть использованы при разработке деформационных, скоростных и температурных режимов обработки предлагаемой марки стали.

Выводы:

- 1. Разработана и исследована новая марка низколегированной стали для колесного производства.
- 2. Рекомендуемый оптимальный химический состав стали, мас. %: углерод -0.10, кремний -0.31, хром -0.1, ванадий -0.13, титан -0.12.
- 3. Выявлены особенности пластического формоизменения новой марки стали в условиях горячей обработки.

Литература

- [1] Гривняк И. Свариваемость стали / И. Гривняк. М.: Машиностроение, $1984. 216 \, \mathrm{c}$.
- [2] Пат. № 1404544, СССР. МПК4С22С 38 /42, Сталь / Фонштейн Н. М., Голованенко С. А. и др. заявл. 15.11.1986; опубл. 23.06.1988.
- [3] Новик, Ф. С. Оптимизация процессов технологии металлов методами планирования экспериментов / Ф. С. Новик, Я. Б. Арсов. – М.: Машиностроение; София: Техника, 1980. – 304 с.

3/2014

Chigirinsky V.¹, Dyja H.², Knapinski M.², Sheyko S.P.¹

- ¹ Zaporozhye National Technical University. Ukraine, Zaporozhye
- ² Czectochowa University of Technology. Poland, Czectochowa

FORMATION OF MECHANICAL PROPERTIES LOW ALLOY STEELS FOR THE AUTOMOTIVE INDUSTRY IN COLD AND HOT DEFORMATION

In this paper we analyzed the effect of chromium, vanadium and titanium on the mechanical properties of steel using the statistical method of planning an active experiment. Established patterns of changes in the mechanical properties of the degree of alloying steel. The optimum chemical composition of the steel. Established that the mechanical properties of steel strongly depends on the content of chromium and titanium steel. Noticeably affect the ratio between the quantity of chromium and titanium. Presentation of the results of the experiment a second degree polynomial proved justified - a significant part of the nonlinear terms is significantly different from zero.

Keywords: low-alloy steel; alloying elements; chemical composition; mechanical properties; planning methods

References

- [1] Grivnjak I. Svarivaemost' stali / I. Grivnjak. M.: Mashinostroenie, 1984. 216 s.
- [2] Pat. № 1404544, SSSR. MPK4S22S 38 /42, Stal' / Fonshtejn N. M., Golovanenko S. A. i dr. zajavl. 15.11.1986; opubl. 23.06.1988.
- [3] Novik, F. S. Optimizacija processov tehnologii metallov metodami planirovanija jeksperimentov / F. S. Novik, Ja. B. Arsov. M.: Mashinostroenie; Sofija: Tehnika, 1980. 304 s .